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An example of a smooth curve C of genus one, defined over Q, that has a
point over every completion of Q, but no Q-points:

C := {(x : y : z) ∈ P2 : 3x3 + 4y3 + 5z3 = 0}

C admits points over a cubic extension of Q. For example, by setting
z = 0, we see that C has a point defined over Q( 3

√
−3/4) = Q( 3

√
−6).

More generally, whenever we intersect C with a hyperplane H, we get a set
of 3 points defined over a cubic algebra.
The curve C represents a non-trivial element of the Tate-Shafarevich group
X(E/Q) of its Jacobian elliptic curve E . We say this element capitulates
over the field Q( 3

√
−6).
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The Selmer example is an element of 3-torsion of X(E/Q). We can
also look at n-torsion elements.

Elements of n-torsion of X(E/Q) are represented by degree n curves
C ⊂ Pn−1 , of genus one, that have points everywhere locally.
Intersection of C and a random hyperplane C ∩ H consists of n points
defined over a degree n extension of Q.
Question: What is the smallest degree n field L over which C has a
rational point?
Main result: the discriminant of L is bounded by a power of the height
of the Jacobian elliptic curve of C .
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Background

An elliptic curve E/Q is a smooth curve of genus one with a marked
rational point 0E . There is a natural way to make E into a group
variety, with the point 0E being the identity.
The curve E admits a Weierstrass model - it can be defined as a plane
curve by an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6
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Twists

X/Q a variety. A twist of X is a variety Y , defined over Q, that is
isomorphic to X over Q̄. Two twists Y1/Q and Y2/Q are isomorphic if
Y1 and Y2 are isomorphic over Q.
Example: The plane conic Y : {x2 + y2 + z2 = 0} is isomorphic to P1

over C, but not over Q - the set Y (R) is empty.

Let C/Q be a general curve of genus one. It is possible that C does
not have rational points. If so, so then it can’t be defined by a
Weierstrass equation.
The Jacobian variety of C is an elliptic curve E/Q, that is a twist of
C . C has a rational point precisely when it is isomorphic to E , i.e.
when this twist is trivial.
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Let n ≥ 3. An n-diagram is a closed embedding [C −→ Pn−1], where
the curve C is a genus one curve, of degree n, that spans Pn−1.
For n = 2: A 2-diagram is a double cover [C −→ P1].

Let C/Q be a genus one curve that is everywhere locally soluble.
Then for some n, there exists an n-diagram [C −→ Pn−1].
Two n-diagrams [C1 −→ Pn−1] and [C2 −→ Pn−1] are equivalent if there
is an automorphism of Pn−1 taking C1 to C2.
The set of everywhere locally soluble n-diagrams that are twists of a
fixed elliptic curve E is parametrized by the n-Selmer group of E .

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 6 / 25



Let n ≥ 3. An n-diagram is a closed embedding [C −→ Pn−1], where
the curve C is a genus one curve, of degree n, that spans Pn−1.
For n = 2: A 2-diagram is a double cover [C −→ P1].
Let C/Q be a genus one curve that is everywhere locally soluble.
Then for some n, there exists an n-diagram [C −→ Pn−1].

Two n-diagrams [C1 −→ Pn−1] and [C2 −→ Pn−1] are equivalent if there
is an automorphism of Pn−1 taking C1 to C2.
The set of everywhere locally soluble n-diagrams that are twists of a
fixed elliptic curve E is parametrized by the n-Selmer group of E .

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 6 / 25



Let n ≥ 3. An n-diagram is a closed embedding [C −→ Pn−1], where
the curve C is a genus one curve, of degree n, that spans Pn−1.
For n = 2: A 2-diagram is a double cover [C −→ P1].
Let C/Q be a genus one curve that is everywhere locally soluble.
Then for some n, there exists an n-diagram [C −→ Pn−1].
Two n-diagrams [C1 −→ Pn−1] and [C2 −→ Pn−1] are equivalent if there
is an automorphism of Pn−1 taking C1 to C2.

The set of everywhere locally soluble n-diagrams that are twists of a
fixed elliptic curve E is parametrized by the n-Selmer group of E .

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 6 / 25



Let n ≥ 3. An n-diagram is a closed embedding [C −→ Pn−1], where
the curve C is a genus one curve, of degree n, that spans Pn−1.
For n = 2: A 2-diagram is a double cover [C −→ P1].
Let C/Q be a genus one curve that is everywhere locally soluble.
Then for some n, there exists an n-diagram [C −→ Pn−1].
Two n-diagrams [C1 −→ Pn−1] and [C2 −→ Pn−1] are equivalent if there
is an automorphism of Pn−1 taking C1 to C2.
The set of everywhere locally soluble n-diagrams that are twists of a
fixed elliptic curve E is parametrized by the n-Selmer group of E .

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 6 / 25



Main result

Fix a global minimal Weierstrass equation for E

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

Let c4 and c6 be the associated invariants of the equation. The naive
height of E is HE = max(|c4(E )|1/4, |c6(E )|1/6).

If E : y2 = x3 + Ax + B , then H12
E = O(max(|A|3,B2)).

Theorem

Let n ≥ 3 be an odd integer, and let C be a twist of E that represents an
element of X(E/Q)[n]. Suppose that the index of C is equal to n. There
exists a constant c(n), depending only on n, and a degree n number field K
of discriminant at most c(n)H2n−2

E , such that C admits a K -rational point.
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Equations for n-diagrams

Let [C −→ Pn−1] be an n-diagram. For small n, we can describe the
equations that define it:

n = 2: The double cover C −→ P1 can be realized by a model of the
form y2 = f (x , z), where f (x , z) is a binary quartic.
n = 3: C ⊂ P2 is a plane cubic, and so defined by a ternary cubic
form F (x , y , z).
n = 4: C ⊂ P3 is a space curve of degree 4. C is always an
intersection of two quadrics P and Q in variables x , y , z , t.

Conversely, a generic equation in the above list defines a smooth genus one
curve. The space Xn of genus one models of degree n is the affine space of
binary quartics, ternary cubics and pairs of quaternary quadrics.

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 8 / 25



Equations for n-diagrams

Let [C −→ Pn−1] be an n-diagram. For small n, we can describe the
equations that define it:

n = 2: The double cover C −→ P1 can be realized by a model of the
form y2 = f (x , z), where f (x , z) is a binary quartic.
n = 3: C ⊂ P2 is a plane cubic, and so defined by a ternary cubic
form F (x , y , z).
n = 4: C ⊂ P3 is a space curve of degree 4. C is always an
intersection of two quadrics P and Q in variables x , y , z , t.

Conversely, a generic equation in the above list defines a smooth genus one
curve. The space Xn of genus one models of degree n is the affine space of
binary quartics, ternary cubics and pairs of quaternary quadrics.

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 8 / 25



Equations for n-diagrams

Let [C −→ Pn−1] be an n-diagram. For small n, we can describe the
equations that define it:

n = 2: The double cover C −→ P1 can be realized by a model of the
form y2 = f (x , z), where f (x , z) is a binary quartic.
n = 3: C ⊂ P2 is a plane cubic, and so defined by a ternary cubic
form F (x , y , z).
n = 4: C ⊂ P3 is a space curve of degree 4. C is always an
intersection of two quadrics P and Q in variables x , y , z , t.

Conversely, a generic equation in the above list defines a smooth genus one
curve. The space Xn of genus one models of degree n is the affine space of
binary quartics, ternary cubics and pairs of quaternary quadrics.

Lazar Radicevic Capitulation Discriminants of Genus One Curves January 19, 2022 8 / 25



A genus one model of a given n-diagram [C −→ Pn−1] is far from
unique. There are two reasons for this: we are free to make projective
changes of coordinates on the ambient space Pn−1, and the equations
that define the curve C are not unique.
For example, if F is a ternary cubic and g ∈ GLn(Q), F (x , y , z) and
F ((x , y , z) · g) represent the same diagram, as well as λ · F for any
λ ∈ Q.

This is encoded in the action of a group Gn on the space Xn of genus
one models of degree n. Every n-diagram [C −→ Pn−1] gives rise to a
well-defined equivalence class in Gn(Q)\Xn(Q).
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We can use invariant theory to study the set Gn(Q)\Xn(Q). Let Z[Xn]
be the ring of polynomials in the coefficients of genus one models.

There exist polynomials c4 and c6 in Z[Xn], which are invariants of
weight 4 and 6 for the action of Gn, with the property that if
F ∈ Xn(Q) is a genus one model that defines a smooth genus one
curve C ⊂ Pn−1, then

y2 = x3 − 27c4(F ) + 54c6(F )

defines the Jacobian of C . There is also the discriminant invariant
∆ ∈ Z[Xn], with 1728∆(F ) = c4(F )

3 − c6(F )
2.

Example: n = 2, f = ax4 + bx3y + cx2y2 + dxy3 + ey4 ∈ X2(Q) has
invariants c4 = 24I and c6 = 25J where

I = 12ae − 3bd + c2

J = 72ace − 27ad2 − 27b2e + 9bcd − 2c3.
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Integral models

We say a genus one model F of an n-diagram [C −→ Pn−1] is minimal
if F has integer coefficients, so F ∈ Xn(Z), and the discriminant ∆(F )
is equal to the discriminant of the minimal Weierstrass equation for
the Jacobian of C .
Minimization theorem: An n-diagram [C ⊂ Pn−1] where C is
everywhere locally soluble admits a minimal model.

A minimal model of [C −→ Pn−1] has small integer coefficients.
Goes back to the work of Birch and Swinnterton-Dyer in the 60s.
Useful when searching for rational points on elliptic curves.
Also used in the work of Bhargava and Shankar on average ranks of
n-Selmer groups of elliptic curves.
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Generalizing to n ≥ 5

For n ≥ 5: C −→ Pn−1 is a closed embedding, and the homogeneous
ideal I (C ) that defines C is generated by n(n − 3)/2 quadrics, and is
not a complete intersection.
n = 5: [C ⊂ P4] a 5-diagram. I (C ) generated by 5 quadrics in 5
variables.

The quadrics that cut out a genus one curve are very special - if we
take five random quadrics in Q[x1, . . . , x5], they usually won’t even
define a curve.
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Let R = Q[x1, . . . , xn] be the graded homogeneous coordinate ring of
Pn−1.
Minimal graded free resolution of I is a chain complex of graded free
R-modules

0 −→ Fm
ϕm−→ Fm−1

ϕm−2−−−→ . . . −→ F1
ϕ1−→ F0 = R −→ 0

that is exact, except at the rightmost step, where im(ϕ1) = I (C ).
n = 3: C ⊂ P2 is a plane cubic, so the ideal I (C ) is principal,
generated by F ∈ R . The resolution is

0 −→ R
·F−→ R −→ 0
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n = 4: C ⊂ P4. The ideal I (C ) is generated by a pair of quadratic
forms f and g . The resolution of I (C ):

F• : 0 −→ R

 g
−f


−−−−→ R2

(
f g

)
−−−−−→ R −→ 0.

The map R2 −→ R says: I (C ) = R · f ⊕ R · g .
The map R −→ R2: g · f + (−f ) · g = 0, and any R-linear relation
p · f + q · g = 0 is a multiple of this one.
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n = 5 , C ⊂ P4. The minimal graded free resolution of I (C ) is of the
form:

0 −→ R
ϕT

−→ R5 A−→ R5 ϕ−→ R −→ 0

A is a skew-symmetric 5 × 5-matrix, with entries linear forms in
x1, x2, . . . , x5. ϕ is the row vector of (signed) 4 × 4 Pfaffians of A.
Pfaffian of a skew-symmetric matrix is square root of its determinant.
In fact, for a generic matrix A as above, the variety in P4 defined by
the Pfaffians of A is a genus one curve of degree 5.
X5 is the affine space of skew-symmetric matrices A of linear forms in
x1, . . . , x5.
Fisher: as before, there are invariants c4, c6 ∈ Z[X5] that can be used
to write down the Jacobian of C , and the minimization theorem holds.
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For n > 5, do not have a simple description of the resolution F• of
I (C ). We do have a structure theorem: F• is a chain complex of form

R(−n)
ϕn−2−−−→ R(−n + 2)bn−3

ϕn−3−−−→ . . . . . .
ϕ2−→ R(−2)b1 ϕ1−→ R

where bi = n
(n−2

i

)
−
( n
i+1

)

The ideal I (C ) is Gorenstein, so F• is self-dual.
The space of genus one models of degree n is defined as the space of
chain complexes as above that are self-dual.
Group Gn = GLbn−2 × . . .× GLb0 × GLn on the space Xn. The group
GLbn−2 × . . .× GLb0 acts on the free modules in the resolution, and
GLn acts by linear substitutions in x1, . . . , xn.
Non-degenerate orbits in Gn\Xn parametrise isomorphism classes of
n-diagrams [C −→ Pn−1].
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Fisher defines invariants c4 and c6 for these models. The basic building
blocks are square bracket symbols built out of partial differentials:

[a1, a2, . . . , an−2] =
∂ϕ1

∂xa1

∂ϕ2

∂xa2

· · · ∂ϕn−2

∂xan−2

,

These are quadratic forms in x1, . . . , xn.

Let σ = (1, 2, . . . , n − 2) ∈ Sn−2. We then define

[[a1, a2, . . . , an−2]] =
n−2∑
k=1

[aσ2k (1), aσ2k (2), . . . , aσ2k (n−2)].

The symbols [[. . .]] assemble to an alternating matrix Ω of quadratic
forms, which transforms in a natural way for the action of Gn on Xn.
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[[. . .]] turn out to be invariant under the action of the first factor
GLbn−2 × . . .× GLb0 of Gn.
Let V be the space of linear forms x1, . . . , xn - view it as the standard
representation of GLn = GL(V ). The matrix Ω is an element of
detV ⊗ Λ2V ⊗ S2V .
From Ω we construct two further invariants, c4 ∈ (detV )⊗4 and
c6 ∈ (detV )⊗6.
Method of proof: GLn is generated by diagonal matices, upper
triangular matrices, and a copy of Sn (permutation matrices).

Checking the transformation law for first two is straightforward.
Permutation matrices are done by a lot of combinatorial fiddling with
symbols [. . .]

Main results: For n odd, the formula for the Jacobian, and the
minimization theorem hold.
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Rank n rings and sets of n points

A set X of n points in Pn−2 is in general position if no n − 1 of them
lie on a hyperplane.
If X is defined over Q, the ring of global functions on X is an
n-dimensional etale Q-algebra.

n = 3: X ⊂ P1: 3 roots of a binary cubic form
ax3 + bx2y + cxy2 + dy3 ∈ Q[x , y ].
n = 4: X ⊂ P2: intersection of a pair of quadratic forms
f (x , y , z), g(x , y , z) ∈ Q[x , y , z ].
n = 5: X ⊂ P3: Pfaffians of a 5 × 5-matrix
A(x1, x2, x3, x4) ∈ Q[x1, x2, x3, x4].
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Rank n rings and sets of n points

Resolution models of sets of n points are the same as for genus one
curves, but with one less variable:

R(−n)
ϕn−2−−−→ R(−n + 2)bn−3

ϕn−3−−−→ . . . . . .
ϕ2−→ R(−2)b1 ϕ1−→ R

where R = Q[x1, . . . , xn−1], satisfying the same duality condition.

In the same way as before, we define the symbols [[. . .]]. Instead of a
matrix, we get n− 1 quadrics Ω1, . . . ,Ωn−1, that represent an element
of V ∗ ⊗ S2V , V the vector space of linear forms on Pn−2.
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Our main result is

Theorem (Fisher - R.)

The ring A of global functions on X has a basis 1, α1, . . . , αn−1, such that
for all 1 ≤ i , j ≤ n − 1 we have

αiαj = c0
ij +

n−1∑
k=1

∂2Ωk

∂xi∂xj
αk .

for some c0
ij ∈ k .

Key point - if the resolution model F• is integral, then the structure
constants are integers, and define an order in the algebra A.
When n = 3, 4, 5, this specializes to the Delone-Faddeev
correspondence and higher composition laws of Bhargava. These are
more general: they account for all rings of rank n ≤ 5.
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The proof: First step is to show that we can reduce to the case when
k = k̄ is algebraically closed.

Every set X of n points in general position is projectively equivalent to
(1 : 0 : . . . : 0), (0 : 1 : 0 : . . . : 0), . . . , (1 : 0 : . . . : 0), (1 : 1 : . . . : 1)
Since we know how the symbols [[. . .]] behave under changes of
coordinates, suffices to compute them for this set.
We do this by explicitly computing the minimal free resolution of this
set.
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n = 3

C ⊂ P2 a 3-diagram, C everywhere locally soluble.

Let F (x , y , z) ∈ Q[x , y , z ] be a cubic that defines C . Consider a
hyperplane H : ux + vy + wz = 0. The intersection H ∩ C consists of
the roots of the binary cubic

F (wx ,wy ,−u · −v · y) = 0

The discriminant of this cubic factors as w6 · D(u, v ,w), where
D(u, v ,w) is a homogeneous polynomial of degree 6 in u, v ,w .
D(u, v ,w) defines the the dual curve to C : It vanishes exactly when
the hyperplane H is tangent to C at some point.
A consequence of Delone-Faddeev: when F has integer coefficents,
and u, v ,w ∈ Z, then D(u, v ,w) is the discriminant of an order in a
cubic field, and so an upper bound for the discriminant of the field.
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By the minimization theorem: there exists F ∈ Z[x , y , z ], with
ck(F ) = ck(E ). Want to show that there exist u, v ,w ∈ Z so that
D(u, v ,w) is small.

F is SL3(R)-equivalent to a cubic G of the form

G := a(x3 + y3 + z3)− 3bxyz

the Hesse normal form of F .
It follows that D is SL3(R)-equivalent to the dual curve DG of G

− 27a4(u6 + v6 + w6) + 162a2b2(u4vw + uv4w + uvw4)

+ (54a4 − 108ab3)(u3v3 + v3w3 + w3u3) + (−324a3b + 81b4)u2v2w2

Under this equivalence, the lattice Z3 of integral hyperplanes in R3

maps to some lattice Λ ∈ R3 of covolume 1.
By Minkowski’s theorem, Λ contains a small vector (u, v ,w). Final
step is to bound the coefficients of DG by a power of the naive height
HE . Then DG (u, v ,w) is the required bound on the discriminant.
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Thanks for listening!
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